Baseline Design of the RISP Accelerator Facility

25th October 2012

Yong-Kyun KIM (Institute for Basic Science)

RISP Status and Plan

- Conceptual Design report (Mar. 2010 Feb. 2011)
- IAC review (Jul. 2011 Oct. 2011)
- Rare Isotope Science Project started in IBS (Dec. 2011) Director Prof. Sunkee Kim
- RISP Workshop on accelerator systems (May 6 9, 2012)
- TAC (May 10, 2012)
- Conceptual Design of the Building and Conventional Facilities (May 2012)
- Baseline Design Summary (by July 2012) Base line parameters
- RISP Workshop on Advanced Experimental Techniques using RI Beams Today 16, July
- IAC (July 26-27, 2012)
- Technical Design Report (by Jun. 2013)
- Ground Breaking (2014)

Rare Isotope Science

"Nuclear science is entering a new era of discovery in understanding how nature works at the most basic level and in applying that knowledge in useful ways". - National Academy 2007 RISAC Report -

Key Science Drivers of RISP

• Highest priority research subjects

- Nuclear reaction experiments important to nuclear-astrophysics : e.g. $^{15}\text{O}(a,\gamma)^{19}\text{Ne},~^{45}\text{V}(p,\gamma)^{46}\text{Cr}$
- Search for super heavy elements : Z > 113
- Nuclear structure of n-rich RI near N=126, 80<A<140
- Nuclear symmetry energy at sub-saturation density

Important scientific applications

- Precision mass measurement & Laser spectroscopy
- Material science : β -NMR, μ -SR
- Medical and bio-science
- Nuclear data for Gen-IV NPP and nuclear waste transmutation

Selected RI beams for BDS

RI Beam species	Energy Range	Desired Intensity [pps]	Research fields
¹³² Sn, ¹⁴⁴ Xe	> 100 A MeV	10 ⁸ , 10 ⁶	Nuclear structure
¹⁵ O	< 10 A MeV < 30 keV	10 ¹⁰ 10 ⁸	Nuclear astrophysics Material Science
^{26m} Al	< 15 A MeV	107	Nuclear astrophysics
⁴⁵ V	0.6-2.25 A MeV	$10^7 - 10^9$	Nuclear astrophysics
⁶⁸ Ni, ¹⁰⁶ Sn, ¹³² Sn, ^{140, 142} Xe	10-250 A MeV	10 ⁹	Symmetry energy
^{6,8} He, ¹² Be, ²⁴⁻³⁰ O	50-100 A MeV	10 ⁹	Nuclear Study with Polarized target
¹⁷ N, ¹⁷ B, ¹² B, ¹⁴⁻¹⁵ B, ³¹⁻³² Al, ³⁴ K	50-100 A MeV	10 ⁹	Nuclear Study with Polarized RI beam
⁶⁴ Ni, ⁵⁸ Fe (stable)	A few A MeV	1012	SHE
⁸ Li, ¹¹ Be, ¹⁷ Ne	< 30 keV	10 ⁸	Material science
¹³³⁻¹⁴⁰ Sn	< 60 keV	1	Atomic physics
⁸ B, ⁹⁻¹¹ C, ¹⁵ O	≥ 200 A MeV	$10^7 - 10^9$	Medical and Bio science

Birth of RISP : KoRIA (April, 2009)

RAON: RISP Accelerator Complex

Accelerator System

Accelerator System

Beam Requirement of Accelerator System

Accelerator	Driver Linac		Post Acc.	Cyclotron
Particle	proton	U ⁺⁷⁹	RI beam	proton
Beam energy	600 MeV	200 MeV/u	18.5 MeV/u	70 MeV
Beam current	660µA	8.3 рµА	-	1 mA
Power on target	400 kW	400 kW	-	70 kW

Driver Linac

ECR Ion Source

Superconducting Magnet

- Consists of 28 GHz RF system and superconducting magnets for high current ion beam generation
- X-ray shielding required
- High temp oven under design
- Generating 12 pµA (U beam)

ECR-IS		
Ion Beam	Proton to Uranium beam	
Extraction Energy	10 keV/u	
RF power	10 kW	
Extraction Emittance	0.1π mm-mrad	
Beam Current	12 puA (²³⁸ U ³³⁺ , ²³⁸ U ³⁴⁺)	
RF Frequence	28GHz	

RFQ

RFQ is

- To accelerate ion beams from 10 keV/u to 300 keV/u
- 4 m long, 81.25 MHz

RFQ		
Input Energy	10 keV/u	
Output Energy	300 keV/u	
Input Emittance (rms)	0.12π mm-rad	
Frequency	81.25 MHz	
Input charge	33, 34 (Uranium-238)	
Input current	12 pµA	
Output current	9.5 pµA	

RFQ

- ϵ_x =0.12 mm-mrad, ϵ_y =0.18 mm-mrad, ϵ_z =8.2 MeV-deg @ exit of RFQ With LEBT bunchers (TRACK code)
- Accelerate ion beams 10 keV/u to 300 keV/u

Driver SCL

SCL is designed

- To accommodate the needs of various user groups
- To accelerate high intensity beams
- Nb Cavities operating at 2K
- Focusing by normal conducting quad doublets
- Optimized geometric beta of SC cavities (0.047, 0.12, 0.30, 0.53)
- Employs larger aperture to reduce beam loss (4cm and 5 cm aperture)
- Cryogenic load estimated 1.9 kW [Driver Linac 2K] + 0.35 kW [Post Acc]
- Cavity geometry optimized for Epeak/Eacc, Bpeak/Eacc, R/Q, QR_s

- Linac base frequency = 81.25 MHz
- Design to accelerate high intensity ion beams
- Flexile operation to meet the needs of various user groups

- NC quadrupole lattice option has the following merits:
- 1. Accurate alignment < 150 mm of NC quadrupoles is straightforward.
- 2. Beam quality control is straightforward and design is more adequate for high power beam operation.
- 3. Advantages in beam diagnostics and collimation through beam boxes.
- The linac cost seems to be in error range compared with the SC solenoid option. (← removal of costly SC solenoids)
- 5. Preliminary cryo-load comparison suggests that overall cryo-load difference is small compared with the dynamic load.

- Present SCL layout provides good beam diagnostics configuration for machine tuning.
- Necessary beam diagnostics can be installed at beam boxes.
- Also provides good beam loss collimation, improving beam quality for users, reducing beam loss.

SCL machine tolerance

(Driver SCL, Post SCL)

Machine imperfections for actual accelerator

Parameters	SCRF Cavity	Warm Quadrupole	SC Solenoid	Distribution
Displacement (mm)	±1	±0.15	±0.5	Uniform
Rotation (mrad)	-	±5	-	Uniform
Phase (deg)	±1	-	-	3σ Gaussian
Amplitude (%)	±1	-	-	3σ Gaussian

- Preliminary study is done.
- Further studies on machine tolerances will be done.

ISOL Facility @ RISP

ISOL Facility @ RISP

Development of ISOL System Components

System	Component	Development Goal/Challenging
Target	High Power fission Target	10 ¹⁴ fission/s (UC _x)
	400 kW Spallation Target	Various Target materials (Ta, SiC)
RI Ion Source	SI, FEBIAD, RILIS	High vapor pressure elements
Gas Stopper	Gas Catcher + RILIS	Low vapor pressure elements
RF-Cooler	CW and Pulsed	Emitt. ~ 3 π , ΔE < 10 eV $\epsilon_{trans.}$ > 60 %
HRMS	R _m ~10000 and R _m ~45000	D > 40 cm/% for R _m ~45000
Charge Breeder	ECR and/or EBIS	BG < 1 nA for ECR, E = 5 keV/u
A/q Selector	E + B Combination	R _m > 3000
Expected yield @ Low E exp. hall		~ 10 ⁸ pps for ¹³² Sn

(HRIBF, CERN-ISOLDE, KEK-ISOL etc.)

Cyclotron

Post-Accelerator System

Main Research Subjects

Nuclear Science	Nuclear Astrophysics & Nucleosynthesis	 Direct measurements of proton and alpha capture reactions Search for Super Heavy Elements beyond Z=113
	Nuclear Structure & Matter	 - RI nuclear structure of neutron rich nuclei near N=126, 80<a<140< li=""> - Symmetry energies at sub-saturation density </a<140<>
	Nuclear Data	- Neutron capture cross section measurements by using n-TOF
	Nuclear Theory	- Development of RI nuclear theories
Atomic & Molecular Science	Precision Mass Measurement & Laser Spectroscopy	- Hyperfine structure and characteristics of element and nuclei
Material Science	RI Material Research	- Search for new material and its properties with $\beta\text{-NMR}/\mu\text{SR}$ and RI beam
Medical & Bio Science	Medical & Bio application	 Development of new cancer therapy Biological effect of tissue and DNA by RI beam

Essential experimental systems

- Study the preliminary researches
- **Develop** the experimental systems in parallel with the accelerator
- Make user program with the international collaboration

25

Recoil Spectrometer (KRS)

Main facility for nuclear and nuclear astrophysics exp with low E beams

Spec. of the RISP Recoil spectrometer

Maximum magnetic rigidity (T·m)	~ 1.5
Mass resolution (Δ M/M)	< 0.5 %
Momentum resolution ($\Delta p/p$)	~ 0.05 %
Angular acceptance (mrad)	< ± 100
Background reduction	< 10 ⁻¹⁵

Available experiments at the RISP Recoil Spectrometer

Physics topics	Measurements
rp-process	radiative capture, transfer reaction, elastic/inelastic scattering
s- & r-process	transfer reaction (d,p), decay measurement
neutron drip line studies, halo nuclei	transfer reaction, scattering
proton drip line studies	transfer reaction, fusion-evaporation reaction

Variable operation modes

- RI beam production via in-flight method
- Recoil separation

Double achromatic with electrostatic component

Large Acceptance Spectrometer

Physics goal

Sensitivity of observables for symmetry energy

- Pygmy Dipole Resonance
- Flow
- Particle yield and ratio
- Etc.

With state beam (²³⁸U up to 200A MeV) & unstable beam ¹³²Sn up to 250A MeV

28

Atomic and nuclear physics

Bio-Medical Science

Nuclear Data

Measurement of cross-section (total, capture, etc)

- Measurement of neutron total cross section at 0° degree with respective to neutron beam
- Measurement of different cross section at 30° coincidently
- 160 BaF₂ ball detector to increase the detection efficiency of gamma-ray
- Decay time : 0.6 ns
- C₆D₆ detector : ~ 2 ns decay time

Development Plan

Schedule

Bird's Eye View

Thank you for attention !

Question or comment ?

